
Programming Language (630203)
Fall 2010/2011 – Lecture Notes # 8

Repetition Control Structures-I

Objectives of the Lecture
� Repetition (looping) control structures.
� while Looping (Repetition) Structure
� Counter-Controlled while Loops

Repetition (looping) control structures
Why Is Repetition Needed?
� Repetition allows you to efficiently use variables.
� Can input, add, and average multiple numbers using a limited number of variables.

o For example, to add five numbers:
o Declare a variable for each number, input the numbers and add the variables together
o Create a loop that reads a number into a variable and adds it to a variable that contains

the sum of the numbers
Kinds of Repetition control structures.
� C++ has three looping (repetition) structures:
� while, for , and do…while.
� while, for , and do are reserved words.
� while and for loops are called pretest loops
� do...while loop is called a posttest loop
� while and for may not execute at all, but do...while always executes at least once
� A while loop can be:

o Counter-controlled
o Sentinel-controlled
o Flag- controlled
o EOF-controlled

� for loop: simplifies the writing of a counter-controlled while loop

while Looping (Repetition) Structure
� The general form of the while statement is:

� while is a reserved word
� Statement can be simple or compound
� Expression acts as a decision maker and is usually a logical expression
� Statement is called the body of the loop
� The parentheses are part of the syntax

� Infinite loop: continues to execute
o Avoided by including statements in loop body that assure exit condition is eventually

false

continues to execute endlessly:
Avoided by including statements in loop body that assure exit condition is eventually

Avoided by including statements in loop body that assure exit condition is eventually

Counter
Counter-controlled repetition requires:
� The name of a control variable (or loop counter).
� The initial value of the control variable.
� The condition that tests for the final value of the control variable (i.e., whether looping should

continue).
� The increment (or decrement) by which the control variable is modified each time through the

loop.

Example:
 int counter =1; //initialization
 while (counter <= 10){ //repetition condition
 cout << counter << endl;
 ++counter; //increment
 }

� If you know exactly how many pieces of data need to be read,

o while loop becomes a counter

//Program: Counter-Controlled Loop
#include <iostream>
using namespace std;
int main()
{
 int limit; //store the number of data items
 int number; //variable to store the number
 int sum; //variable to store the sum
 int counter; //loop control variable
 cout << "Line 1: Enter the number of "
 << "integers in the list: "; //Line 1
 cin >> limit; //Line 2
 cout << endl;
 sum = 0; //Line 4
 counter = 0; //Line 5

Counter-Controlled while Loops
controlled repetition requires:

The name of a control variable (or loop counter).
e control variable.

The condition that tests for the final value of the control variable (i.e., whether looping should

The increment (or decrement) by which the control variable is modified each time through the

; //initialization
while (counter <= 10){ //repetition condition

cout << counter << endl;
++counter; //increment

If you know exactly how many pieces of data need to be read,
becomes a counter-controlled loop

Controlled Loop

int limit; //store the number of data items
int number; //variable to store the number

/variable to store the sum
int counter; //loop control variable
cout << "Line 1: Enter the number of "

<< "integers in the list: "; //Line 1
cin >> limit; //Line 2

 //Line 3
sum = 0; //Line 4
counter = 0; //Line 5

The condition that tests for the final value of the control variable (i.e., whether looping should

The increment (or decrement) by which the control variable is modified each time through the

<< "integers in the list: "; //Line 1
cin >> limit; //Line 2

//Line 3
sum = 0; //Line 4
counter = 0; //Line 5

 cout << "Line 6: Enter " << limit
 << " integers." << endl; //Line 6
 while (counter < limit) //Line 7
 {
 cin >> number; //Line 8
 sum = sum + number; //Line 9
 counter++; //Line 10
 }
 cout << "Line 11: The sum of the " << limit
 << " numbers = " << sum << endl; //Line 11
 if (counter != 0) //Line 12
 cout << "Line 13: The average = "
 << sum / counter << endl; //Line 13
 else //Line 14
 cout << "Line 15: No input." << endl; //Line 15

 return 0; //Line 16
}

